

Total Synthesis of Sieboldine A

Denksport, 16.06.2011

Introduction:

- Lycopodium alkaloid
- isolated from the club moss Lycopodium sieboldii
- native in Japan
- structure elucidation in 2003 by Kobayashi et al.
- up to now 2 total synthesis published
 (Overman et al., Tu et al.)

Sieboldine A

Biological activity:

- cytotoxicity against murine lymphoma L1210 cells (IC₅₀ 5.1 μg/mL)
- acetylcholinesterase inhibitor (IC₅₀ 2.0 μg/mL)
 comparable to huperzine A (IC₅₀ 1.6 μg/mL)
 (huperzine A: clinical evaluation for treatment of Alzheimer's disease and schizophrenia (NCT00083590))

Sieboldine A

Huperzine A

Acetylcholinesterase:

... family of enzymes that catalyze the hydrolysis of acetylcholin

acetylcholin acts as neurotransmitter for the: PNS (peripheral nervous system)

CNS (central nervous system)

Mode of action: • PNS (peripheral nervous system)

acetylcholin binds to acetylcholine receptors on skeletal muscle fibers

ligand-gated sodium channels is opened

 \downarrow

muscle contraction

acetylcholinesterase hydrolizes acetylcholin

 \downarrow

muscle relaxation

Mode of action: • PNS (peripheral nervous system)

acetylcholin binds to acetylcholine receptors on skeletal muscle fibers

ligand-gated sodium channels is opened

muscle contraction

Inhibition

muscle spasm, ultimately death

acetylcholinesterase hydrolizes acetylcholin

muscle relaxation

Acetylcholinesterase Inhibition:

Sarin

- developed in the late 1930s
- originally used as pesticides
- extremly high toxicity
- penetrates skin

weapon of mass destruction:

Mode of action:

• CNS (central nervous system)

- inhibition of AChE reduces memory deficits, if the cholinergic (acetylcholine -producing)
 system is damaged → application against Alzheimer disease
- important role in the enhancement of sensory perceptions

Sieboldine A

Huperzine A

1st Total Synthesis by Overman et al.:

OTES

OH

1st Total Synthesis by Overman et al.:

Summary:

- 20 steps
- 3% overal yield

2nd Total Synthesis by Tu et al.:

O
$$N_2 \sim CO_2Et$$

BF₃*Et₂O

A $\xrightarrow{K_2CO_3}$ aq

Et₂O, -30°C

Boc 55%

B THF, rfx

75%

O NaBH₄, CeCl₃ C
$$\xrightarrow{\text{DMAP}}$$
 D $\xrightarrow{\text{Me}_3\text{Si}(\text{allyl})}$, $\xrightarrow{\text{MeOH}, 0^{\circ}\text{C}}$ Quant. 97% DCE, 60°C 75%

tert-BuLi, CeCl₃
then
$$\mathbf{B}$$
Et₂O, -78°C

$$\begin{array}{c}
 & \text{mCPBA,} \\
 & \text{NaHCO}_3 \\
 & \text{DCM, 0°C}
\end{array}$$
 \mathbf{G}

$$\begin{array}{c}
 & \text{BF}_3*\text{Et}_2\text{O} \\
 & \text{Et}_2\text{O, -30°C}
\end{array}$$
 \mathbf{H}
Et₂O, -30°C
$$\begin{array}{c}
 & \text{Et}_2\text{O, -30°C} \\
 & \text{45\%}
\end{array}$$

K

KTPAP, NMO

DCM, RT

DCM, RT

55%

TFA

DCM, RT

96%

(not isolated)

Alopecuridine

O
$$N_2 \sim CO_2Et$$
 O CO_2Et $N_2 \sim CO_2Et$ $N_2 \sim CO_2E$ N_2

Alopecuridine

(not isolated)

